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Ailltract-On the basis of a simple specific cost function for perforated, elastic plates with a
microstructure offirst- and second-order rib systems we derive optimal designs for axially symmetric
plates with simply supported, clamped or loaded edges. The results are obtained by variational
analysis and the conclusion of the analysis is that for the class of plates considered a first/second·
order microstructure does not result in an improved economy as compared to the first-order
microstructure.

INTRODUCTION

In Part I of this study, the relative economy of various microstructures was determined,
a general formulation for prescribed compliance discussed, a specific cost function derived
and the volume of intuitive designs for uniformly loaded perforated circular simply
supported plates was compared.

In Part II, a general variational analysis is presented and it is shown that the latter
fully confirms the best intuitive design derived in Part I for the case of simply supported
plates. The nonuniqueness of the solution for unloaded regions is also investigated and
several additionalloading/boundary conditions considered.

Part II is in notation and analysis closely related to Part I, and for this reason sections,
equations, figures and references are numbered in succession to the numbers used in Part I.

7. VARIATIONAL FORMULATION

We shall perform a variational analysis of the problem of minimizing the weight of
compliance-constrained axisymmetric perforated elastic plates described by the micromodel
proposed in Section 5 (Part I). Using the notation established in Section 6 of Part I and
repeated in the appendix, the problem can be formulated as

subject to

min <1> = (1 "'(Sf' Sr)r dr
S,.S••M,.M. Jo (51)

(i = 8,r)

(rMrY' - Mi = -r, (M,r/S,)' = (Mr/Sr ) (52)

and homogeneous boundary conditions, where <1> is the total plate volume, '" the specific
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538 G. I. N. ROZVANY er al.

cost (plate volume per unit area of middle surface), Se, S, stiffnesses in the principal
directions, Me, M, the principal moments, r the radial coordinate, C the total compliance
and primes denote differentiation with respect to r. Note that we assume constant transverse
load over the plate domain (cf. eqn (17)). The last two conditions under eqn (52) represent
equilibrium and compatibility. Introducing the Lagrangian functions, L 1" .• , L4 and u, the
Lagrangian multiplier i. and the slack functions S I' ... ,S4, the above problem can be
expressed as

min <1> = Iv ["'(Se, S,) + ).(MiISe + M;IS,) + L j (- Se + sf)

+ L 2( - S, + s~) + L 3(Se - 1 + sn + L4 (S, - 1 + s~)

+ u(M;' + 2M;lr - Melr + O}dr - ).c. (53)

As will be shown later, compatibility is automatically satisfied by the optimal solution.
Then the usual necessary conditions of minimality for variations of S6, S" Me, M, and Sj

(i = 1, ... ,4) imply

- u" = 2), M,IS,

(54)

(55)

(56)

(57)

SjL j = 0 (i=I, ... ,4). (58)

Denoting the elastic plate deflection by w(r), its curvatures by

M,IS, = K, = -w" (59)

and observing that transversality conditions give the same boundary conditions for w(r)
and u(r), it can be seen from eqns (56) and (57) that

w = uI2)'. (60)

The deflection wand the Lagrangian multiplier u are proportional since we deal with a
self-adjoint problem. Note that by eqns (56), (57) and (59) the elastic compatibility condition
(MerIS6)' = (M,IS,) is satisfied. This is to be expected since the stationarity of <1> with respect
to the moments is equivalent to the necessary condition that an equilibrium moment field
minimizes compliance (cf. the dual variational principle of mechanics). It was not necessary,
therefore, to incorporate the compatibility conditions into eqn (53).

Introducing the notation k = II..)A., conditions (54)-(59) and formula (10) for the cost I/J
imply that:

for 0 < Sj < 1, (i = e, r;j = r, e)

(61 )
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for Si = 0,

for S, = S, = 1

(62)

(63)

As the gradient of t/I(SI> Sz) is nonunique at Sl =Sz = 1, its value in the directions of
the Sl and Sz axes (cf. Fig. 5) was taken (at/l/as 1 = at/l/asz = 0).

8. ELIMINATION OF CERTAIN TYPES OF REGIONS FROM THE OPTIMAL SOLUTIONS

8.1. M, == S, == 0, S, "" 0 is non-optimal over a finite interval
In this case eqns (51) and (62) imply that

K, = ksgnM, = -w'/r, -Wi = rksgnM"

K, ~ k(l - S,)

-w" =ksgnM, = K,

(64)

which cannot be satisfied with S, "" 0.

8.2. Me == S, == 0 for 0 ~ r ~ a, M,(a) = M ~ 0 cannot be optimal if the load p is positive
From equilibrium we have that

rM,I, .. o = aM + ffp(r)rdrdr > 0

and from the necessary conditions (62)

(65)

S, = IM,I/k for (0 ~ r ~ a). (66)

However, eqn (65) implies M,(O) -+ 00 and since k (and thus C) cannot be infinite eqn
(66) implies that the condition S, ~ 1 would not hold.

8.3. 0 < S, < 1 and 0 < S, < 1 is not optimal in a finite interval if p(r) "" 0
For this case we can rewrite eqns (59) and (61) to obtain

M, = k[1 - (1- S,)/(l - S,S,)]sgnM,

M, = k[1 - (l - S,)/(1 - S,S,)] sgn M,

and

(rM,)" sgn M, = -k[r(1 - S,)/(l - S,S,)]"

= -(rK,)" sgn M, = w"'sgnM,

(M,)' sgn M, = - k[(l - S,)/(1 - SeS,)),

= -(K,)' sgn M, = w"'sgnM,.

From this we see that

(rM,)" - M, =0

which violates equilibrium for p(r) "" O.

(67)

(68)

(69)
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8.4. Sj = 1,0 < Sj < 1 for a finite interval is not optimal
For these stiffnesses we have 81jJ/8Sj = 0, and eqns (54) and (55) give that K j = O. As

S; = 1 we thus have that either w' = 0 or w' = const. over the interval considered, but these
deflections are not kinematically admissible.

Note: The analyses above imply that the solution to the optimal design problem may
consist only of:

(a) unperforated regions, subsequently termed R(J-regions, where Sr = S, = 1,
(b) regions with radial ribs only, called Rr·regions, where M, = Sg = 0, Sr = Mr/k.

The innermost region (0 ~ r ~ g) must always be an unperforated Ro-region.

9. CONDITIONS FOR OPTIMALLY PI.ACED R,-BOUNDARIES AND RADII OF ZERO MOMENTS

9.1. Rr-boundaries
Considering boundary g, 0 < g < 1, between an R(J-region and an R,-region we seek

a condition for the optimal location of g. To this end, we consider eqn (53) for a family of
solutions that satisfies the necessary conditions (54)-(58) and constraints (52), but where g
has yet to be optimally placed. Thus <1> is a function of g and we can write (only the first
two terms in eqn (53) remain)

where the Ro-region is s ~ r ~ g and the Rr-region is g ~ r ~ t, and where Q contains the
parts of <1> not relevant to g. Taking the derivative of <1> with respect to g and using that
the curvature Kg and the moment Mr are continuous across r = g we have

(71)

We note here, that in Rr-regions we have (cf. eqn (62»

(72)

which is thus also a constraint on g. From eqn (71) we have that 8cP/8g is positive, so the
necessary condition for optimality of cP with respect to g under constraint (72) requires
that this constraint is active

IKgl = k - IM,I at r = g. (73)

Thus, a condition for an optimally placed boundary is that constraint (72) is satisfied as
an equality at the boundary.

9.2. Radii of zero moments
We now consider a radius r =h for which the moments Mr and M, are zero, and seek

a condition for the optimal position of such a radius. As in the preceding. section·we
consider the augmented functional <1> for plates that satisfy conditions (54}-(58) and (52).
By use of eqns (59) and an integration by parts we can write <1> as

(74)
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At the radius r = h we have that M,(h) = M,(h) = 0, and for Ro-regions the cost '" = 1
throughout, while for R,-regions the condition 1",1 = k implies that the cost '" at h is
5,(h) = O. Writing integral (74) over the intervals 0 ~ r < hand h < r ~ 1, it is easily seen
that stationarity of tI> with respect to h requires

<M;w')" =O. (75)

From the equilibrium condition (18a) we see that M; is continuous and different from zero
at r = h, so eqn (75) implies that

(76)

i.e. w' is continuous at optimally placed radii of zero moments.

10. SOLUTION FOR SIMPLY SUPPORTED PLATES

From the results in Section 8 we know that the optimal solution has the form:

(a) Ro-region for r ~ g, v ~ r ~ t (5, = 5, = 1),
(b) R,-region for g < r < v (5, =0),

and perhaps more Ro, R,-regions for r ~ t. We shall now show that v =t = 1 for the
simply supported plates, so such optimal plates contain only one of each of the possible
regions.

For the regions above eqns (18a) and (18b) give that (cr. eqns (35)-(39»

M, = A - 3r2/16 for 0 ~ r < g

M, = Blr - r2/6 for g ~ r ~ v.

Here A and B are constants which are related because of the continuity of M,

(77)

(78)

For the curvatures, we know that - w" = k in the R,-region (cf. eqn (62» and w' for
r ~ g can be found from eqns (18b). This gives for the curvature '"

'" = A - r2/16 for 0 ~ r < g

'" = k - Clr for g ~ r ~ v

where continuity of '" gives that

C = kg + g3/16 - gAo

(79)

(80)

We now employ condition (73) for the optimal placement of the R,-boundary at r = g
and v

From eqn (81a)

A - g2/16 = k - A + 3g2/16

k - C/V = k - B/v + v2/6.

(81a)

(81b)

(82)



542 G. I. N. ROZVANY el al.

which inserted in eqn (81 b) gives g3 = v3
. We thus see that an Ro-region is only possible

at the centre of the plate, and thus v = t = 1. The possible optimal simply supported plate
must thus be of a type like the intuitive design D. And for this optimal plate, the boundary
conditions at r = 1 give that A = (1 + g3/8)/6g and thus (cf. eqns (44))

k = (8 - 5g3)/24g. (83)

Finally we note that with these values of A and k the necessary condition IKel ::s;;; k - IM,I
is satisfied in the interior of the R,-region.

We thus conclude that the optimal simply supported plate is identical with the intuitive
design D, with values of <J)OPI and gOPl shown in Figs 6 and 7.

11. SOLUTION FOR CLAMPED PLATES

In this section, we shall employ the results of the variational analysis in Sections 7­
9 to establish optimal solutions for circular plates with clamped edges. We consider types
of solutions covered by the following region topography:

(a) Ro·region for r ::s;;; g (S, = Se = 1),
(b) R,-region for g < r < t (Se = 0, S, = IM,I/k),
(c) Ro-region for t ::s;;; r ::s;;; 1 (S, = Se = 1).

As will be shown later, optimal solutions associated with sufficiently small values of
I/C correspond to the special case of t = 1, that is, they only consist of one (innermost)
Ro-region and one R,-region. For all other relevant values of l/C, the topography of the
optimal solution will be associated with t < 1 and consist of two Ro-regions and one R,­
region. Since the above topography covers both types of relevant designs, it will be used
as a basis for our analysis in this sequel.

For the innermost Ro-region, the equilibrium condition (l8b) gives

M, = -3r2/16 + A

Me = -r2/16 + A for O::s;;; r < g

w' = r 3/16 - Ar

(84)

where A is a constant, see the derivation of eqns (37) and (39).
For the R,-region, substitution of Se = 0 in the equilibrium condition (l8b) furnishes

M, = B/r - r2/6, where B is a constant. Denoting the radius of zero radial moment by
r = h, i.e.

we have B = h3/6, and hence

M,(h) = 0 (85)

for g < r < t. (86)

Continuity of M, across r = g then implies A = (g3 + 8h3)/48g, whereby eqns (84) can
be written as

M, = - 3r2/16 + (g3 + 8h3)/48g

Me = -r2/16 + (g3 + 8h3)/48g for O::s;;; r < g.

w' .= r 3/16 _ r(g3 + 8h3)/48g

(87)
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For the outer Ro-region (t ~ r ~ I), the equilibrium condition (18b) can be written in
the compact form [(rw')'/r]' = r/2. Three integrations yield w' = E/r - Dr/2 + r3/16, where
E and D are constants. Making use of the boundary condition w'(I) =0, we may express
E as E = D/2 - 1/16, and we have

w' = -D(r2
- 1)/2r + (r4

- 1)/16r

w" = -D(r2 + 1)/2r2 + (3r4 + 1)/16r2

M, = -w" = D(r2 + 1)/2r2 - (3r4 + 1)/16r2

M, = -w'/r = D(r2 - 1)/2r2
- (r4

- 1)/16r2

for t < r ~ 1. (88)

The condition of continuity of M, at r = t now gives us the following expression for
D upon use of eqn (86) and the third of eqns (88)

D = (t4 + 8th3 + 3)/[24(t2 + 1)]. (89)

For the R,-region (g < r < t) with M, =S, =0, eqns (62) prescribe IK,I = k. Since, in
general, M, = S,K, = -S,w", and according to eqn (86) we have M, > 0 for g ~ r < hand
M, < 0 for h < r ~ t, it follows that

K, = - w" = k for g < r < h

K, = - w" = - k for h < r < t.
(90)

We now integrate the second of eqns (90) and impose continuity of w' at r = t by
making use of the first of eqns (88). We hereby obtain

w'(r) = -D(t2
- l)/2t + (t4

- 1)/16t - k(t - r) for h < r ~ t. (91)

Hereafter, we integrate the first of eqns (90) and impose continuity of w' at r = h according
to condition (76) for an optimal value of h. Using eqn (91) for this purpose, we get

w'(r) = -D(t2
- 1)/2t + (t4

- 1)/16t - k(t - 2h + r) for g ~ r ~ h. (92)

By means of eqn (92), the third of eqns (87) and expression (89) for D, the condition
of continuity of w' at r =g leads to the following non-linear algebraic equation between
the four unknowns g, h, t and k

Two additional equations for the unknowns are obtained by using condition (73) for
optimal values of the boundaries r =g and t of R,-regions. Taking into account the signs
of K, and M" condition (73) becomes, for r =g and t, respectively

K,(g) = k - M,(g)

K,(t) = k + M,(t)
(94)

where K,(r) = - w'(r)/r. Substituting eqns (87)-(89) into (94), we obtain the two equations

and

5g3 + 24kg - 8h3 = 0

3t5 + 2t3 + 3t - 8h3
- 24kt(t2 + 1) = O.

(95)

(96)
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It should be noted here that the optimality condition (96) for t presumes that an outer Rr­

region is present in the optimal solution, i.e. that t < 1. If this is not the case, eqn (96) is
to be replaced by the considerably simpler equation t = 1.

The compliance constraint requires

C = f (M; + Mi)rdr + {fM,rdr - IMrrdrJ +f(M; + Mi)rdr. (97)

Substituting the relevant expressions for M r and Me into the integrals on the right-hand
side and solving for k, we find

k = [24C - (5g6
- 16g3h3 + 32h6 )/48 + 6D2(t2 - l/t2

)

+ 3D(1 - t4
- t2 + l/t 2 )/2 - (8 - 5t6

- 6t2 + 3/t2)/32J/

[g4 _ 4gh 3 - 4th 3 + 6h4 + t4J (98)

where D is given by eqn (89).
Equations (93), (95), (96) and (98) determine g, h, t and k for a given value of C.

However, if the system of equations does not possess a solution with t < 1, eqn (96) is to
be replaced by the equation t = 1.

It can easily be shown that a design with g, h, t and k determined from the
aforementioned equations also satisfies the necessary condition (72), Le. IKel ~ k - IMrl, in
the R,-region. Hence, the values of g, h, t and k determined from eqns (93), (95), (98) and
(96) or t = 1 characterize an optimally designed clamped plate.

The volume C!> of the optimal solution has the form

C!> = frdr + ~[fMrrdr - IM,rdrJ + f rdr

and substituting eqn (86) herein, we obtain

(99)

(100)

This equation serves to give us C!> when the optimal values of g, h, t and k are determined.

11.1. Numerical solution procedure and results
For an appropriately given value of C, eqns (93), (95), (96), (98) and (100) uniquely

determine the values of the key parameters g, h, t and k associated with the optimal design
possessing the minimum value ofC!>. Since the equations are strongly coupled and nonlinear,
they require numerical solution. The method developed is based on the following
rearrangements of eqns (93) and (95).

Equation (93) can be rewritten in the following form

h3 + 3ph - 2q = 0

giving the real root

where

p = 2k(t2 + 1)

q = (g3/16 + 3k(g + t)/2Xt 2 + 1) + t(3 - 2t2
- t4 )/16.

(101)

(102)

(103)
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Fig. 8. Optimal rib width distributions for uniformly loaded clamped circular plates.

Similarly, eqn (95) is a cubic equation for g with the real root

The following iterative scheme was used for the numerical solution procedure:

(0) Assume initial values of g, t, hand k.
(1) Compute h from eqn (102), with p and q given by eqns (103).
(2) Compute k from eqn (98), with D given by eqn (89). If k < 0, set k =O. If hand k

are not stationary, go to (1).
(3) Solve eqn (96) for t (this is done by a Newton-Raphson procedure). If no solution

o< t ~ 1 exists, set t = 1.
(4) Compute g from eqn (104). If g and t are not stationary, go to (1).
(5) Compute CI> from eqn (100).

End.

The procedure converges rapidly for all prescribed, relevant C-values and uniquely
determines the optimal solution both for cases of t = 1 and t < 1. However, for some C­
values it was necessary to introduce an underrelaxation of the new values of t and g
computed in steps (3) and (4) for use in the subsequent main iteration loop (1)-(4).

Figure 8 shows examples of distribution of radial stiffness 5, for selected values of
lie. The Ro-regions and the R,-region are easily identified. Note that in the former regions
59 = I and in the latter 59 = O.
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Fig. 9. Optimal weight for "Type A" and "Type B" solutions for uniformly loaded clamped circular
plates.

Figure 9 depicts optimum values of ell as a function of the constraint value 1lC,and
Fig. 10 shows corresponding optimal values of g, hand t.

As indicated in Figs 8 and 9, the optimal clamped plate consists of one (inner) Ro•
region and one (outer) R,-region for sufficiently small values of lie. This type of solution
is associated with t = 1, and the above conditions (93), (95), (96) and (98) furnish that t = 1
requires l/C < 231.27959766. For l/C > 231.27959766, we have t < 1, and the optimal
design consists of two Ro-regions and one R,-region, cr. the two lower parts of Fig. 8.

This state of affairs ceases for I/C = 384, where the intermediate R,-region disappears
and the entire plate consists of an Ro-region. This limiting case is easily found to be
associated with g = h = t = 1/.J3 and ell = 1/2. The case can be checked independently by
considering the well-known moment field

M, = (1 - 3r2)/16, (105)

for 59 == 5, == 1 and 0 ~ r ~ 1. Substituting eqns (105) into the compliance constraint then
furnishes

C =f (M; + Mi)rdr = 1/512 + 1/1536 = 1/384

which corresponds to the limiting case just mentioned.

(106)
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Fig. 10. Optimal values of the region boundary radii (g,t) and the radius of the contraflexure (t)
for uniformly loaded clamped circular plates.

12. SOLUTION FOR CIRCULAR PLATES SUBJECTED TO A UNIFORMLY DISTRIBUTED RADIAL

COUPLE ALONG THE EDGE

If the circular plate is only loaded by a distributed radial bending moment along the
edge, such that we have zero transverse load distribution (p == 0), the plate equilibrium
equation (see eqn (52)) reduces to

(rM,)" - M, = 0 (107)

and the conclusions of Sections 8.2 and 8.3 concerning optimal topography are no longer
valid. However, the optimality conditions (61)-(63) in connection with the results of
Sections 8.1 and 8.4 make it natural to consider the following designs:

Design I : 5, == 5, == 5 == const. and M, == M, == 1 throughout,
Design II : Ro-region for r ~ g,

R,-region for r > g,
Design III: 5, == 5, == 5 == const. for r ~ g, R,-region for r > g,

where the boundary radius r = g in Designs II and III is assumed to be optimally placed.
Performing an analysis similar to that of Sections 10 and 11 (but much simpler), we

find the interesting result that the above designs all satisfy the necessary conditions (61)­
(63) and are of equal cost ell = 1/(1 + C) for a given value of C.

It is particularly interesting to note that the loading condition considered here leads
to optimal plates that contain two-way ribbed regions, cf. Designs I and III with 0 < 5 < 1.
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However, use of these regions does not result in more efficient plates than application of
Ro-regions and Rr-regions.

Finally, we should mention that feasible solutions only exist for l/e ::;; 1, where the
limiting case corresponds to Design II with g = 1 (i.e. uniform, solid plate).

13. SOLUTION FOR SIMPLY SUPPORTED CIRCULAR PLATES WITH A CENTRAL POINT LOAD

As a final example, we consider the problem of minimizing the weight of a simply
supported circular plate loaded by a concentrated force P at the centre. It should be noted
that this problem is of particular interest because the solution will be optimal for both
prescribed compliance and prescribed maximum deflection.

Introducing the non-dimensional notation r = fiR, M j = Mi/P(i = O,r), Sj = 125;/EJ13,
e = cJ13E/24E2p2n, <1> = Cb2/iR2n (cf. eqns (17)), an integration of the plate equilibrium
condition (to7) and making use of the load condition at the centre of the plate gives us

(rMrY - M8 = -1/2n, Mr(l) = o. (108)

The optimal plate topography is an Ro-region for 0 ::;; r < g and an Rr-region for g < r ::;; 1.
Equilibrium (108) and optimality conditions furnish the following solution:

M8 = (1 - g)/2gn + (I/4n)[1 + In (g/r)],

Sr == S8 == 1, M r = (I - g)/2gn + (I/4n) In (g/r),

forr < g
(l09)

M8 == 0, Sr = IMrl/k, M r = (I - r)/2nr, forr > g

e = f(M; + Mi)rdr +fkMrrdr

= (3g2 - 8g + 8)/32n2 + k( 1 - g)2/4n,

k = 4n[e - (3g2 - 8g + 8)/32n2]/( 1 _ g)2,

(110)

(Ill)

<1> = f r dr +f(IMrl/k)r dr = g2/2 + (l - g)2/4nk = g2/2 + (I - g)4/[4nk(l - g)2]

(112)

IK8(g)I = k - IMr(g)1 => k = (4 - 3g)/4ng. (113)

For any e-value, eqns (Ill) and (113) furnish the optimal values of g and k. The
optimal cost <1> is then given by eqn (112)

<1> = g(2 - g2)/2(4 - 3g). (l14)

The optimal values of g, k and <1> are given for the feasible range of (I/C) values in Fig.

11.
The limiting value of (l/C) is attained as g takes on its greatest feasible value, i.e.

g = 1. Relations (110) and (113) then furnish

(I/C) = 32n2/3 = 105.2757803. (115)

At this compliance value, the plate material fills the entire feasible space. For the same
limiting case, relation (113) implies k = 1/4n.



Least-weight design of perforated elastic plates-II 549

1.0

0.5

100 32TT 2

3"
80

R

~
gR

604020

0.5

o

gopt

k opt
1.5

0.1

0.4

0.3

0.2

Fig. II. Optimal values of the total weight Ill, region boundary radius g and the constant k for
simply supported plates with a central point load.

14. CONCLUSIONS

(I) Static/kinematic optimality criteria were derived by variational analysis, using the
microstructure proposed in Part I of this study. Similar criteria have been proposed by
Prager and Shield[23] and used in theories of optimal structural layouts (e.g. Ref. [24]).

(2) The variational formulation has indicated that for transversely loaded axially
symmetric plates only two types of optimal regions may occur:

(a) unperforated regions (having a maximum feasible stiffness in both principal
directions);

(b) regions consisting of radial ribs only.

For circular plates loaded by a distributed couple along the edge two-way ribbed regions
can occur in the optimal plate, but the corresponding minimum cost can also be achieved
Py a plate made of the kind of regions mentioned above.

We thus conclude that for the class of plates considered, the introduction of the
first/second-order microstructure has not resulted in an improved economy.
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APPENDIX: NOTATION

C
E
/I
A1,. A1,
P
f
~

S"S,
cfI
IV

total compliance
Young's modulus
plate depth
circumferential/radial moments
load intensity
radial coordinate
plate radius
stiffness in circumferential/radial direction
total plate volume
plate deflection
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Non-dimensional symbols
C = CfiJ£/2471R6p2
M, = Mi/pR2 (i = e, r)
r = f/R
S, = 12S;/EfiJ
<1> = ~C£f12/24p2R871 = ~/21iR271

W = wfi3£/12R4p
K_ radius of region boundary
M radial moment at r = g
A, B, D, K 1 • K 2 constants
L" .... L4 , u Lagrangian functions
A Lagrangian multiplier
s, , ... ,S4 slack functions
K6• K, circumferential/radial curvature
Ro·regions unperforated regions with S, = S6 = 1
R,-regions regions with radial ribs. S6 .... 0, S, = IM,I/k

Specific for buill-in plates
g, I radii of region boundaries
h radius of points with zero radial moment

Specific for plates with a cenlral poinr load
P = point load

The following non-dimensional symbols differ from those for plates with distributed loads:

M i = M;/P
C = CfiJE/24R2P2 71 .


